= メカCADを活用した「やさしい」熱流体/熱応力解析セミナー=

パワーカードの熱応力と振動特性の計算

- 1. 目的と課題
- 2. 解析モデルの準備
- 3. 熱応力解析と振動解析
- 4. まとめ

1. 目的と課題

- 2. 解析モデルの準備
- 3. 熱応力解析と振動解析
- 4. まとめ

=目的=

• 「T3Ster」と「FloEFD」から得られた構造物内の温度分布を用いた 強度計算を「かんたん」に行うためのプロセスを提案

=課題=

- 構造解析で使用するモデル(メッシュ)の作成
- 機械的な特性値が不明な材料への対応
- 熱流体解析で得られた詳細な温度分布の受け渡し

自動車部品の1つであるパワーカードを例に、FloEFDで計算した熱分布の 結果を構造モデルにマッピングしてNX Nastranによる構造解析を実施。

▋▓KĂŨŇĸĬŎŨŇĸŎŨŇĸĬŎŨŇĸŎŨŇĸĬŎŨŇĸĬŎŨŇĸĬŎŨŇĸŎŨŇĸŎŨŇĸŎŨŇĸŎŨŇĸŎŨŇĸŎŨŇĸ

1. 目的と課題

2. 解析モデルの準備

3. 熱応力解析と振動解析

4. まとめ

強度計算までのプロセス

本項で紹介する範囲

解析モデルの作成に向けて

- 構造解析ができるモデル(メッシュ)の作成
- 機械的な特性値が不明な材料データの設定

構造解析用のメッシュ作成

- = 3D-CADから直接メッシュを作成するポイント=
- メッシュサイズは、形状(特にフィレット、面取り部)の大きさで決める

Oメリット

- ⇒ 形状加工にかかる手間(工数)を大幅に短縮でき、 最終的な結果取得までの時間が早い
- ⇒ サブケースの活用や結果出力項目の制御をすることにより、 複数の境界条件に対しても、割と早く結果を取得できる

Oデメリット

- ⇒ 要素数が膨大になるため、固有値や時刻歴応答、非線形状態など、 計算の途中で構造の剛性を再計算するものには適さない
- ⇒ 1計算あたりのファイルサイズが大きくなる

= Solid Edge ST10を使用するメリット= 中間データ(*.x_t)を出力することなく、ダイレクトにFemapへ データを転送できる

材料データの設定

= Femapを使用するメリット=

①材料データをセルに入力

 Excel上に埋め込んだプログラム(Femap API)を使用することで、 1クリックで材料データを作成することができる

マテリアル作成 〇固定条件 等方性材料のみ ³	リスト 対応		マテリアルリストを	Femapへ転送	2
単位元は自己皆」 (サンブルでは、S	程U U 2007<br II単位系[mm−N−ton]	でデータを入力してい	ます。) Femapからマテリフ	アルリストを取得	
マテリアルID	マテリアル名 1 銅 2 Sn-0.75Cu 3 シリコン 4 エポキシ樹脂	カラー 橙 青 マゼンダ 灰色	質量密度 8.9E-09 7.3E-09 1.38E-09 1.46936E-09	縦弾性率 1180 34000 2500 2400	ポアソン比 0.3 0.37 0.3 0.3
		1	1		

プロパティ(特性)データの設定

 = Femapを使用するメリット=
 Excel上に埋め込んだプログラム(Femap API)を使用することで、 1クリックでプロパティデータを作成することができる

ハッド要素ブロ	バティ作成リスト							モデル情報	4 ×		
固定条件					$\overline{\mathbf{O}}$			03 🛤 Roj 🖦 per 🔏 🗸			
ぅーはデフォルト!	青)に固定		ソリッド要素リストを	をFemapへ転送							
変更する場合は	Femapのメニューより	ι						日 モデル	^		
修正]-[カラー]-[ブロバティコマンドを使	使用下さい									
								⊞ ್, マテリアル			
			Forment in TIL 18=	ティリフトた取得				😑 👤 プロパティ			
			remap///spercy	11771-24817				🐨 🗊 1f_P_heatsink			
								🖉 📶 2.,f 02 heatsink			
		+	#107-1-1-1-1- A	材料軸の設定				I a solder IGBT back			
ノロハティレ	ノロハナイ名	79-	登照マナリアルロ 唇	乾標系D	10;			4 f selder ICPT back			
	1 f_P_heatsink	橙	1					4.1_Solder_IGB1_back			
	2 f_02_heatsink	マゼンダ	1					🐨 🛃 5f_IGB1			
	3 f_solder_IGBT_back	青	2					🖅 🗇 6f_IGBT			
	4 f_solder_IGB1_back	育	2					🐨 🐨 7f_solder_IGBT_front			
		用巴	3	-				8f_solder_IGBT_front			
	7 f.solder IGBT front	東ご	3			N		🛛 👩 9f_spacer_IGBT			
	B f solder IGBT front	書	2					🖉 📶 10. f spacer IGBT			
	9 f spacer IGBT	橙	1					Init_space_root			
1	f_spacer_IGBT	橙	1					TISolder_IGBT_from	=		
1	1 f_solder_IGBT_front	青	2					12t_solder_IGB1_tront			
1	2 f_solder_IGBT_front	青	2					🐨 🛃 13f_solder_FWD_back			
1	3 f_solder_FWD_back	青	2					🐨 🗊 14f_solder_FWD_back			
1	4 f_solder_FWD_back	青	2					- 🕢 💋 15f_FWD			
1	stjewd stewd	水色	3					🐨 🗊 16f_FWD			
1	7 f. oolder EWD front	小巴 書						IT f solder FWD front			
1	B f solder EWD front	書	2					7 18 f solder EWD front			
1	9 f spacer FWD	橙	1								
2) f_spacer_FWD	橙	1	-				19spacer_FWD			
2	1 f_solder_FWD_front	青	2					🐨 🖅 👩 20t_spacer_FWD			
2	2 f_solder_FWD_front	青	2					🐨 🕢 21f_solder_FWD_front			
2	3 f_terminal	黄緑	1					🐨 🖅 💋 22f_solder_FWD_front			
2	4 t_terminal	更禄	1					🐨 🖅 💋 23f_terminal			
2	s f_terminal 8 f_terminal	貝 称 若纪	1		-			🛛 🗊 24f terminal			
2	7 f.terminal	更 🕅 诺昂	1		-			a 25 f terminal			
2	B f terminal	黄緑	1		_			a 26 f terminal	-		
2	9 f_terminal	黄緑	1					20.1_terminal	Fema	nに ノロハティ	
3) f_terminal	黄緑	1			<u> </u>		27t_terminal	i ontu		~ ~
3	1 f_terminal	黄緑	1					🐨 🐨 28f_terminal		thz	
3	2 f_terminal	黄緑	1	(別品名と参	喧くテリアル	/	🐨 🗊 29f_terminal	Т ГЛХ С	2110	
3	3 f_01-N_heatsink	ピンク	1					🐨 🕣 30f_terminal			
3	4 f_01-N_heatsink	常	1		ニ クをわ			🐨 📶 31f terminal			
3	o f_O_terminal	育緑	1		テータをじ			a 32 f terminal			
3	7 f. oolder heatsink	古	2					a 22 f O1 N hosteinle			
3	r i jaoider ji reatsink Bit regin	同価	2					35.1_OI-N_REALSINK	-		
	0.000	MC .	4					a company that + O1 M hostolek			

=形状線が近くにある場合の対応=

 分割線(赤枠部)が近くにある場合は、品質の悪いメッシュが 作成されてしまうため、以下のようにサーフェスをまとめる

=部品同士の接着(固着)条件の設定=

複雑な構造を持つ場合は、メッシュの形を揃えるよりも、接着による メッシュ結合を行う方が効率よく解析モデルを作成できる

メッシュ特性の設定

= Femapを使用するメリット= Excel上に埋め込んだプログラム(Femap API)を使用することで、 2クリックでプロパティデータを作成することができる

メッシュサイズの設定

構造解析用のメッシュ

社内にデータベースが無く、現物がある場合

- 製品の化学成分の分析や材料試験をして値を推定
- ハンマリング試験から製品の固有振動数を求め、
 - この固有振動数を再現するためのパラメータを同定

	++*:1	質量密度	ヤング率	ポアソン比	線膨張係数	
	ሳባ ሎት	[ton/mm³]	[N/mm²]	[-]	[×10 ⁻⁶ /K]	
	銅	8.90E-09	1180	0.3	17.7	
	Sn-0.75Cu	7.30E-09	34000	0.37	22.6	
	シリコン	1.38E-09	115000	N/A	3.34	
	エポキシ樹脂	N/A	N/A	N/A	45	
解析モデル作成後、現物の重量と合う 質量密度を算出することで可					今回は、簡易的なハンマリング試験で得られた固有振動数をもとに、材料の	
=1 /*/*)						ヤンク率とホアソン比を求める

計算式)

(合わせたい重量) × (設定した質量密度) ÷ (現在の重量)

簡易的なハンマリング試験

ハンマリング試験で得られた固有振動数を再現する物性値を取得するため、 NX Nastranで固有値解析と設計感度最適化解析(SOL200)を実施

=課題=

- 3D-CADに直接作成したメッシュ規模では、 計算機のメモリ不足と膨大な計算コストが 発生する可能性が高い
- 無拘束の条件下で固有値解析を行うと、
 ヒートシンク、ターミナル端子部分だけが
 応答する

=対策=

- ・ メモリ不足/計算コストについては、メッシュ数の削減で対応
- ・ 特定部位のみの応答については、モデルの簡易化で対応

=設計感度最適化解析で使用するモデル=

= 簡略したモデルの質量密度を調整 =

- ヒートシンクとターミナル端子の 簡略化により、銅の質量密度を調整
- resinの簡略化により、エポキシの 質量密度を調整

	詳細モデル				簡易モデル					
	体積[mm ³]	重量[ton]	質量密度[ton/mm ³]	体積[mm3]		体積比	重量[ton]		質量密度[ton/mm ³]
材料			手計算	設定値	形状省略後	使用部分	(詳細/簡易)	設定値	質量合せ込み後	
銅	6738.864	5.99759E-05	8.90000E-09	8.90000E-09	5767.992	6341.181	0.910	5.64365E-05	5.13350E-05	8.09549E-09
Sn-0.75Cu	220.4614	1.60937E-06	7.30001E-09	7.30000E-09	220.4614	221.125	0.997	1.61421E-06	1.61421E-06	7.30000E-09
シリコン	128.8	1.77744E-07	1.38000E-09	1.38000E-09	128.8	128.8	1.000	1.77744E-07	1.77744E-07	1.38000E-09
エポキシ	8600.348	1.26370E-05	1.46936E-09	1.46936E-09	8600.348	8496.423	1.012	1.24843E-05	1.26370E-05	1.48733E-09
合計		7.44000E-05						合計	6.57640E-05	ton 7
								減らす重量を足すと	7.44047E+01	g
現物重量		7.44000E-05								
簡易モデル	で減らす重量	8.641	g							
銅の目標重		51.335	g							/
							設計局	成度最適化解	析だけで	/
							使日常	となられた		
							12月9	の貝里出皮		

=合わせ込み前の固有値解析の結果=

++*1	質量密度	ヤング率	ポアソン <mark>比</mark>	線膨張係数
ሳ <u>ሳ</u> ለዓ	[ton/mm ³]	[N/mm ²]	[-]	[×10 ⁻⁶ /K]
銅	8.09549E-09	1180	0.3	17.7
Sn-0.75Cu	7.30000E-09	34000	0.37	22.6
シリコン	1.38000E-09	115000	0.3	3.34
エポキシ樹脂	1.48733E-09	2400	0.4	45

材料データ

補足)

橙色の値は、簡易モデル用に調整した値である 黄色の値は、仮の値である。

1次モード(927.42[Hz])

- =設計感度最適化解析の条件=
- 目標パラメータ
 1次固有振動数をハンマリング試験で得た478[Hz]に近づける
- 設計変数

シリコンチップとresin(エポキシ)のヤング率とポアソン比

材料	項目	下限値	上限値	補足
シリコンチップ	ヤング率[N/mm ²]	70,000	150,000	Web上では、おおよそ115,000
	ポアソン比[-]	0.2	0.45	Web上では、おおよそ0.3
エポキシ樹脂	ヤング率[N/mm ²]	100	5000	Web上では、おおよそ2400
	ポアソン比[-]	0.3	0.45	Web上では、おおよそ0.4

※解析は固有値解析とし、無拘束(フリー)の条件で行う

= ModeCorrelatorを使用して設計感度最適化解析の条件を設定= ・ 専用のGUIを使用して、入力カードを簡単に作成

INNOR® UNKNOR® UNKNOR® <th< th=""><th>ModeCorrelator v1.2</th><th>- I</th><th>ModeCorrelator v1.2</th><th></th><th></th><th></th><th></th><th></th></th<>	ModeCorrelator v1.2	- I	ModeCorrelator v1.2					
評価 日 2 3 4 5 からの 第28日100 1021 2000 1081 1081 108	01MAC値 02MAC値表 03材料更新 04710ハラィ更新 05571/54_2)が解析 TRACKING CoMAC表 直交性表 擬似質量7月/957 (位test) [印fem] EXTRA がうう 減変更新 FF 💷	01	MAC値 02MAC値表 03材料更新 (047℃ハディ更新 059	Eデルチューニング演绎す	F TRACKING CoMAC	C表 直交性表 擬似質量マトリクス [Фtest] [Φf	em] EXTRA グラフ 減衰更新 FF ・・
小の 小	実験, 解析 1 0 0 1 1		項目	値	最小	最大		▲ オギリパラマーク取得
NO. RB42(M2 02/07.52) 2011 10.1000 000 10000 2010 0000 2010 0000 2010 000	$\frac{1}{2} \xrightarrow{1} 100 \frac{1}{2} \xrightarrow{1} 100 \rightarrow 1 \qquad 2 \qquad 3 \qquad 4 \qquad 0$		<u> ጶ</u> イフ°	等方性	ID	1		10147 (227 - 2421)
 ・ 100 000 000 0001 0000 1000 000 0001 0000 1000 0000 0001 0000 1000 0000 0000 0002 1000 0000 0002 0000 0022 1000 0000 0000 0002 1000 0000 0000 0000 1000 0000 0000 1000 0000 10000 0000 10000 0000 10000 0000 10000 0000 10000 0000 10000 00000 10000 0000 10000 0000 100000 00000 100000000 10000000000 1000000000000000000000000000000000000	MAC 周波我处H2 9.2742E+17696E+24619E+24619E+		\$4FM	銅				材料カード生成(DVMREL)
	▶ 1 478 1.000 0.000 0.001 0.005		縦弾性率 E ([力]/(面積])	1180				
1 128952-03 0.000 <	2 1.3241E+03 0.000 1.000 0.888 0.004 0.002		ホアソン比レ	0.3				
 ▲ 24722+30 0.01 0.04 0.001 1002 0.022 ★ 24722+30 0.05 0.002 0.000 0.022 0.000 ★ 24722+30 0.05 0.002 0.000 0.022 0.000 ★ 24722+30 0.05 0.002 0.000 0.022 0.000 ★ 5 2.4112+03 0.05 0.000 0.022 0.000 ★ 5 2.4112+03 0.05 0.000 0.022 0.000 ★ 5 2.4112+03 0.05 0.000 0.022 0.000 ★ 5 2.4112+03 0.000 0.022 0.000 ★ 5 2.4112+03 0.000 0.022 0.000 ★ 5 2.4112+03 0.000 0.000 0.0000 ★ 5 2.4112+03 0.000 0.000 0.0000 ★ 5 2.4112+03 0.000 0.0000 ★ 5 2.4112+03 0.000 0.0000 ★ 5 2.4112+03 0.0000 ★ 5 2.4112+03 0.0000 0.0000 ★ 5 2.4112+03 0.00000 ★ 5 2.4112+03 0.000000 ★ 5 2.4112+03 0.000000 ★ 5 2.4112+03 0.000000 ★ 5 2.4112+03 0.000000000 ★ 5 2.4112+03 0.0000000000000 ★ 5 2.4112+03 0.0000000000000000000000000000000000	3 1.7696E+03 0.000 0.888 1.000 0.001 0.000		質量密度 ρ([質量]/[(本積])	8.09549E-09				
5 2.45192-03 0.002	4 24372E+03 0.001 0.004 0.001 1.000 0.022		構造減衰係数 GE ([-])	0				
	5 2,4619E+03 0.005 0.002 0.000 0.022 1.000		<u> </u>	等方性	ID	2		
			<u>ቁ</u> ብኑル	Sn=0.75Cu				
株潮化計算手法 K-ドベア選択 MAG値基準 0.9 0.37 0.0 0.0 検潮化計算手法 ZMGedMethod 反認計算回版 0 0.0 0.000 大力持動激激(私 21余守過激励) 1.59キングデータ 0.3 0.2 0.45 受加加た(大う小) 凝散(1) 1.59キングデータ 0.0 0.000 0.000 分? 第方性 10 0.000 0.000 0.000 0.000 人がん 302 0.45 0.000 0.000 0.000 0.000 0.000 人物(通力、一) 英歌(1) 1.59キングデータ 1.59キングデータ 0.000 0.000 0.000 0.000 0.000 分? 第方性 10 4 0.000 <			縦弾性率 E ([力]/[面積])	34000				
			ホアソン比レ	0.37				
構造成契(係数 GE ((-)) 0			質量密度 ρ ([質量]/[(本積])	7.3E-09				E
			構造減衰係数 GE ([-])	0				
最適化計算手法 近似手法 近似手法 近い「方」 資量効素 「「管量」(*2) (~2)) 「ご該許 判定基準値 0.7) 「上下該該許 判定基準値 0.7) 「上下該該許 判定基準値 0.7) 上ー下確認 CoNAC計算 CSV書出 MAC値表1-二ング(MSC NastranODA) 0.3L 、 セード対応カード生成 で会性確認 CSV表出 CSV表出 がしたがったっかいし したかったっかいし したかったっかいし したかったっかいし したかったっかった したかったり したかったり したかっかいし したかっかいし したかったっかいし したかったいし したかったいし したかったいし したかったいし したかっかいし したかっかいし したかっかいし したかっかいし したかっかいし したかっかいし したかっかいし したかっかいし したいうかいし したかっかいし したかっかいし したいうかいし したかっかいし したいうがは したかっかいし したかっかいし したいうかいし したいかいし したかっかいし したいかいし したいっかいし したかっかいし したいっかいし したいっかいし したいのし したのし したいし 			<u> </u>	等方性	ID	3		
			<u>ቁ</u> ለኑル	シリコン				
● ●			縦弾性率 E ([力]/(面積])	115000	70000	150000		
最適化計算手法			ホアソン比レ	0.3	0.2	0.45		DV/MRE1 89547D 200001
Real La Y-CA GA GA	泉漆ル11位年1上 エービルで建物		質量密度 ρ ([質量]/[(体積])	1.38E-09			• • • • • • • • • • • • • • • • • • •	DOMINELI#19-10 300001
Z01x+子: Z01x+F: Z01x+F	税用Lb1 算 7/2 近代ませ、 2 Min 2		構造減衰係数 GE ([-])	0				DESVAR開始ID 300001
最適化手法 LIAMED(573) ● 解較値 2.1年音が確認設計 ● 一 質量均束 一 質量均束 「 質量)(+ 2 / 2 %) 最適化がたージレベル 0 なし ● (株 未 リレーシャン モード対応カード生成 ● 文仕幅記 CSV接込 ○ AC計算 CSV接込 ○ SV接込 ○ SV接込 ○ SV接込 ○ SV接込 ○ SV接込 ○ SV接込 ○ (質量)/(it積) 1.48738E-09 ○ (質量)/(it積) 1.48738E-09 ○ (質量)/(it積) 1.48738E-09 ○ (質量)/(it積) 1.48738E-09 ○ (質量)/(it積) ○ () () () () () () () () () (近以子法 (Z.mixedwetriod) 以底計算回版 100 対角自動選択 自動推定		<u> </u>	等方性	ID	4		ID初期化
● 賃量拘束 ① 長ード/36掛 ⑦ モード/36掛 Picを歩準値 0.7 モード/確認 CSV書出 「成役性生 E (/力)//面積) 2400 100 5000 ● 加名C(進力=ニング(MSC Nastran(DA)) 最適化/少セージレンル ① 表し 正文性端辺 CoMAC計算 CSV書出 「広SV書出 「広SV書出 「常力/少比シ 0.4 0.3 0.45 ● 備来コルーシルン モード対応カード生成 「広SV信益」 「CSV信益」 「営 密度 ρ ((賃 量)/(は積)] 148738E-09 」 」	最適化手法 [1.1MFD(57)a) → 離散値 2.1条字的確認設計 →		\$4FM	エポキシ樹脂				
■ MAC値チューニングY(MSC Nastranのみ) 最適化がセージレベル ■ 直交性端辺 CoMAC計算 第アソン比シ 0.4 0.3 0.45 □ なし ● 「補未コリーウン モード対応カート*生成 直交性端辺 CoMAC計算 CSV(族込 「補金の度 o ((質量)/(1体積)) 1.46738E-09 ■	□ 質量拘束		縦弾性率 E ([力]/(面積])	2400	100	5000		
0 なし □ 複条コリレーション モート対応カート生成	■ MAC値チューニング(MSC Nastranのみ) 最適化ケオセージンへル 高交性検知の CoMAC計算		ホアソン比レ	0.4	0.3	0.45		
	0.なし - 回線楽リレーション モード対応カート生成 CSV読込		質量密度 ρ ([質量]/[体積])	1.48733E-09				-
77-67	7=_47							
ベイジネ ::: 材料7-9取得元7. :::	······	材]料データ取得元了.					ii.

=設計感度最適化解析の結果=

材料データ

++*:	質量密度	ヤング率	ポアソン比	線膨張係数
ሳ <u>ሳ</u> ለ ካ	[ton/mm³]	[N/mm ²]	[-]	[×10 ⁻⁶ /K]
銅	8.09549E-09	1180	0.3	17.7
Sn-0.75Cu	7.30000E-09	34000	0.37	22.6
シリコン	1.38000E-09	115000	0.3	3.34
エポキシ樹脂	1.48733E-09	2400	0.4	45
		1-2-68-	18 - 1 - 1 - 1 - 1 - 1	상승 명화 기도 가장 파티

++*:	質量密度	ヤング率	ポアソン比	線膨張係数
ባሳ ለ ግ	[ton/mm³]	[N/mm ²]	[-]	[×10 ⁻⁶ /K]
銅	8.09549E-09	1180	0.3	17.7
Sn-0.75Cu	7.30000E-09	34000	0.37	22.6
シリコン	1.38000E-09	115000	0.3	3.34
エポキシ樹脂	1.48733E-09	100	0.45	45

"ウトプットセット: Mode 1, 493.223 Hz 変形(417.0): Total Translation

1次モード(493.22[Hz])

試験結果(478[Hz])に対し、

かなり近づく結果に

= 熱応力解析で使用する材料データ=

++*1	質量密度	ヤング率	ポアソン比	線膨張係数
ሳሳ ሶት	[ton/mm³]	[N/mm ²]	[-]	[×10 ⁻⁶ /K]
銅	8.90E-09	1180	0.3	17.7
Sn-0.75Cu	7.30E-09	34000	0.37	22.6
シリコン	1.38E-09	115000	0.3	3.34
エポキシ樹脂	1.46936E-09	100	0.45	45

材料データ

- - 1. 目的と課題
 - 2. 解析モデルの準備
 - 3. 熱応力解析と振動解析
 - 4. まとめ

強度計算までのプロセス

28

本項で紹介する範囲

温度分布の取得

=流体解析で得た温度分布を構造用のメッシュにマッピング=

構造用のメッシュに温度荷重として 設定される

温度分布の取得

=元のモデルに温度荷重を取り込む=

〇本設定を行う理由

- ・元のモデルにはジオメトリデータがあるため、
 他の境界条件の設定や管理がしやすい
- ・モデルに設定した色に関する情報を保持できる

■ モデルマージマネージ・	Þ						×
マージ/抽出							
元のモデル 温度nas_	v1132.modfem	•	先のモデル Struc	tural_Model2_v1132.mod	fem		1
エンティティタイプ	先のモデルID	元のモデルID	にリナンバ	リナンバ数		すべてオン	
■ 座標系					[すべてオフ]
	$\overline{2}$					すべて選択	
マテリアル						選択しない	
📝 荷重セット	11	13	23	1 of 2		選択を更新	
1 拘束セット					-	すべてを更新	
ー リナンバおよび重複時の処理	里		エンティティ選択				21
◎ なし	◎ 重複のみ	・リナンバ	🔿 なし 🛛 🧕) モデル内のすべて 💿 選	択		
◎ 最小リナンバ	◎ 重複を上	:書き	◎ グループから				-
◎ ブロックリナンバ			○ ID範囲 目	期始 1	終了	99999999	
◎ オフセットリナンハ	(リナンバ	1	2 関係および関連する	るエンティティを追加	関連エ	ンティティ追加	ñ I
マージモデルの処理		<mark>``</mark>	<u> </u>				
□ マージモデルのグルー:	プ化	マージ	モデルの座標変換		重複を	データテーブルに	4
🔲 マージモデル用親座橋	票系の生成	元()全体直交座標系			OK(O)	
② 変換されたグループを ③ 満番 均面お ビジン	要約 ルケトをマージされたエ、キ	二 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一)全体直交座標系		3	キャンセル	
	VOULAX - ACUNETAL	1211200198					

熱応力解析の実施

=解析条件

固定条件:端部(水色)をピン拘束 荷重条件:モデル全体に温度荷重負荷 結合条件:部品間で接する面を接着結合 解析タイプ:線形静解析(SOL101)

= せん断応力分布図=

熱応力解析結果

熱応力解析結果

=はんだのせん断応力分布=

= 熱応力下におけるresinの振動応答を評価 =

固定条件:端部(水色)をピン拘束 荷重条件:resin左下(赤矢印)をZ方向へ1[N]の加振負荷(1-1000[Hz]) 結合条件:部品間で接する面を接着結合 解析タイプ:線形静解析(SOL101)+モード法周波数応答解析(SOL111)

=NX Nastranの設定=

②サブケースの機能を使用し、熱応力解析⇒ 周波数応答解析を連続して行うように編集

=周波数応答評価=

38

参考:固有振動数と固有モード

- - 1. 目的と課題
 - 2. 解析モデルの準備
 - 3. 熱応力解析と振動解析
 - 4. まとめ

本検討で得られた内容と課題

T3Ster、FloEFDから得られた温度分布の結果を使用することで、

- 構造内に発生する熱応力の解析が簡単にできるようになる
- 熱応力を持った状態における動的特性の評価ができるようになる

今後の課題

- 現段階では、解析手法の提案レベルに過ぎないため、実機レベルでの 検証が必要である。
- 複雑な解析への対応
 - ⇒ 非線形現象の考慮、時刻歴に依存する温度データの取得など

ご清聴、ありがとうございました

OP ABOUT SERVICE COMPANY RECRUIT CONTAG

私たちは、人のため、未来のために、 世界に通ずる技術をめざします

株式会社 FRONE

[本社-契約関連-Head-Office]

IAIL: info@frone.jp

L: http://frone.jp